1.  A cube of edge 5 cm is cut into cubes each of edge 1 cm. The ratio of the total surface area of one of the small cubes to that of the large cube is equal to :

1 : 5
1 : 25
1 : 125
1 : 625

```Answer

Answer: Option  B Explanation:Required ratio = 6 * 1 * 1⁄6 * 5 * 5 = 1⁄25 = 1 : 25. ```

Report

2.  If the area of the base of a right circular cone is 3850 cm2 and its height is 84 cm, then the curved surface area of the cone is :

10001 cm2
10010 cm2
10100 cm2
11000 cm2

```Answer

Answer: Option  B Explanation:πr2 = 3850.
r2 = (3850 * 7⁄22) = 1225.
r = 35.
Now, r = 35 cm, h = 84 cm.
So, l =$\sqrt{\mathrm{\left(35\right)2}}$ + $\sqrt{\mathrm{\left(84\right)2}}$ = $\sqrt{\mathrm{1225 + 7056}}$ = $\sqrt{\mathrm{8281}}$ = 91 cm.
Curved surface area = (22⁄7 * 35 * 91) cm2 = 10010 cm2. ```

Report

3.  The surface area of a cube is 600 cm2. The length of its diagonal is :

10$\sqrt{3}$
10$\sqrt{2}$
10$\sqrt{2}$
10$\sqrt{3}$

```Answer

Answer: Option  D Explanation:6a2 = 600.
a2 = 100 .
a = 10.
Diagonal =$\sqrt{3}$a = 10$\sqrt{3}$ cm. ```

Report

4.  The curved surface of a right circular cone of height 15 cm and base diameter 16 cm is :

60π cm2
68π cm2
120π cm2
136π cm2

```Answer

Answer: Option  D Explanation:h = 15 cm, r = 8 cm. So, l = $\sqrt{\mathrm{r2+ h2}}$ = $\sqrt{\mathrm{82+ \left(15\right)2}}$ = 17 cm.
Curved surface area = πrl = (π * 8 * 17) cm2 = 136π cm2. ```

Report

5.  The volume of a sphere is 4851 cu. cm. Its curved surface area is :

1386 cm2
1625 cm2
1716 cm2
3087 cm2

```Answer

Answer: Option  A Explanation:4⁄3 * 22⁄7 * R2.
R3 = (4851 * 3⁄4 * 7⁄22) = (21⁄2)3.
R = 21⁄2.
Curved surface area = (4 * 22⁄7 * 21⁄2 * 21⁄2) cm2 = 1386 cm2. ```

Report