Answer Answer: Option C Explanation:Radius of incircle of an equilateral triangle = a⁄23 Radius of circumcircle of an equilateral triangle = a⁄3 Required ratioπa2⁄12 : πa2⁄3 = 1⁄12 = 1⁄3 = 1 : 4.
Workspace
ReportMail id: Report Error:
Answer Answer: Option D Explanation:Ratio of sides = 1⁄2 : 1⁄3 : 1⁄4 = 6 : 4 : 3 Perimeter = (52 * 6⁄13 ) cm, (52 * ⁄13) cm and ( 52 * 3⁄13) cm. a = 24 cm, b = 16 cm, c= 12 cm. Length of smallest side = 12 cm.
Answer Answer: Option A Explanation:Let Base = b cm and Height = h cm. b + h + 26 = 60. b + h = 34. (b + h)2 = (34)2. Also, b2 + h2 = (26)2. (b + h)2 - (b2 + h2) = (34)2 - (26)2 2bh = (34 + 26) (34 - 26) = 480. bh = 240 = 1⁄2 bh = 120.
Answer Answer: Option C Explanation:Area of an equilateral triangle of side a cm = (3⁄4 a2) cm2. 3⁄4 a2 = 243. a2 = 96. a = 46. Perimeter = 3a = 126cm.
Answer Answer: Option D Explanation:Let the base of the two triangles be x and y and their heights be 3h and 4h respectively. Then 1⁄2 * x * 3h⁄1⁄2 * y * 4h = 4⁄3. x⁄y = (4⁄3 * 4⁄3) = 16⁄9. Required ratio = 16 : 9.